
Shedding light on web privacy impact assessment:
A case study of the Ambient Light Sensor API

Lukasz Olejnik
European Data Protection Supervisor, Brussels, Belgium

me@lukaszolejnik.com

Abstract—As modern web browsers gain new and increasingly
powerful features the importance of impact assessments of the
new functionality becomes crucial.

A web privacy impact assessment of a planned web browser
feature, the Ambient Light Sensor API, indicated risks arising
from the exposure of overly precise information about the lighting
conditions in the user environment. The analysis led to the
demonstration of direct risks of leaks of user data, such as the
list of visited websites or exfiltration of sensitive content across
distinct browser contexts.

Our work contributed to the creation of web standards
leading to decisions by browser vendors (i.e. obsolescence, non-
implementation or modification to the operation of browser
features). We highlight the need to consider broad risks when
making reviews of new features. We offer practically-driven high-
level observations lying on the intersection of web security and
privacy risk engineering and modeling, and standardization. We
structure our work as a case study from activities spanning over
three years.

I. INTRODUCTION

Designing powerful application programming interfaces
(APIs) requires care. Assessing the various impacts of new
technologies, especially in the already complex environments
like the web platform is a challenge. In 2020, all web
browser features typically undergo various forms of scrutiny
to inspect the impact on security, privacy, accessibility or even
human rights. Variations of such reviews or impact assessment
processes exist at every web browser vendor. They are also
pursued in multi-stakeholder settings like within the IETF
or W3C, at the standardization time. Standards for privacy
review of emerging or novel web features are still in the
process of evolution [1]–[6], essentially a work in progress.
Our contribution is another step in this journey.

Modern smartphones and a selection of notebooks are
equipped with light sensors. Ambient Light Sensor API [7]
enable the web browser to take advantage of this device
capability to access lighting condition in the user environment,
similarly to what mobile applications can do. While the ability
to detect the light level in the user environment potentially in-
troduces ways of building innovative web application features
[8], some concerns over misuse of the light sensor on mobile
devices included the ability to infer the watched video [9], or
even to stealing of bank PINs [10].

In this work, we describe several risks we identified that
arise from the unconstrained access to precise raw readouts
of the light sensors. We specifically focus on the potential of
using the device capability to perform side-channel attacks

leading to information leaks induced by attacker-controller
websites. Our work had practical impacts. The constructed
proof of concepts were instrumental during the standardization
and feature development process, with a direct impact on the
shaping of the understanding of potential dangers.

This work partly describes the activities from interacting
with the wider standardization community over more than
three years (2016–2020). In this sense, the work we present
here is a unique privacy engineering case study.

II. RELATED WORK

Importance to consider privacy when designing internet pro-
tocols has been clarified in the seminal Request for Comment
6973 [3]. The W3C maintains a dedicated security and privacy
health-check document meant to help feature developers to
consider risks at early stages [4]. In the case of privacy reviews
of web standards, the earliest works are those of Dawson [1]
and Doty [2]. Impact-oriented case studies validated by data
followed, like with the example of the Battery Status API case
[5]. The work of Das [6] offer practical insight from the study
of website usage of device sensors. While the time of their
work coincided with our study, they are separate; the authors
link to our demonstrations as external examples.

With many risks demonstrated recently, research into side-
channel leaks on the web if flourishing, with examples in-
cluding keystroke leaks [11] or the information leaked via
high precision timers [12]. Web browser history leaks [13]–
[15] are perhaps among the most straight-forward way of
demonstrating security and privacy impact arising from a new
web component.

III. AMBIENT LIGHT SENSOR: CASE STUDY

Ambient Light Sensor [7] is a web browser API that enables
websites to access to the light level conditions as seen by the
user device sensors. The illuminance value is expressed in the
SI unit, lux. Initially, the API was on the rails of a typical W3C
standardization process; the event-based API from 2015 [16]
was refactored into Ambient Light Sensor. In 2017 light sensor
access in the browser was available via Ambient Light Sensor
API (Chrome Canary) and via the previous-generation API via
device light events (Mozilla Firefox). Both worked similarly,
providing precise readouts with a resolution between 0 to tens
of thousands of lux.

Fig. 1. Example code facilitating the distinguishing between states via light
sensor

A. The permissions debate

It is often assumed that permission prompts lead to user
fatigue, a phenomenon thought to be similar to the mechanics
of users disregarding browser security warnings [17]. For this
reason browser vendors are often inclined to favor distraction-
less browsing experiences. Reasoning along this line, on
8/04/2017 Chrome developers expressed an intention to ex-
pose the Ambient Light Sensor API without gating it behind
a browser permission mechanism (i.e. without a prompt)
[18]. Problems with such approaches were demonstrated on
19/04/2017 via a proof of concept that suggested to reassess
the threat model.

B. Stealing user data with light sensors

While capability to read the light level may result in
complex risks [10], such unstructured concerns might be
unconvincing. While the role of proof of concepts in security
engineering is well established, this model is not always
directly transferable to privacy engineering. Light sensor API
proved to be the case where such a concrete demonstration
was possible.

Single-origin policy (and other mechanisms meant to protect
user privacy) prevent access to certain information across
distinct browser contexts, e.g. when websites are prevented
to read data from embedded third-party contexts like iframes.
We devised proof of concepts demonstrating the exfiltration
of user data, demonstrating that the inclusion of the light
sensor negatively impacts on existing web platform security
and privacy model (a regression). This misuse was possible
solely due to the introduction of the light sensor API to the
web platform.

The attack we devised was a side-channel leak, conceptually
very simple, taking advantage of the optical properties of
human skin and its reflective properties. Skin reflectance only
accounts for the 4-7% emitted light [19] but modern display
screens emit light with significant luminance. We exploited
these facts of nature to craft an attack that reasoned about
the website content via information encoded in the light level
and conveyed via the user skin, back to the browsing context
tracking the light sensor readings. Attacker website changed

the background color via CSS styling, conditioned on the
information to be exfiltrated. We observed that the relative
differences in the level of few to a few tens of lux between
light levels emitted by a screens displaying websites with a
full white or full black background were measurable (e.g. a
full white page would correspond to the readout of 6 lux, the
black page to 0 lux, under dim conditions).

1) Stealing web browsing history with light sensor: The
first step in the attack is an initial calibration where the website
implements a simple heuristic to associate the detected light
levels with different colors of the page content.

The first demonstration was the classic example of web
browsing history stealing using the CSS :visited class to style
the document background color according to the visited or
unvisited state of the link. The proof of concept iterated over
a list of websites and dynamically injected an <a> tag with
a URL of interest to test the visited or unvisited state of the
sites. The CSS styling depicted on Fig. 1 result in a full white
page if the website is visited, and full black otherwise. The
measurable differences in light levels as reported by the light
sensor detected via the Ambient Light Sensor API allowed for
a discovery of the state of the website (i.e. visited/unvisited).

This demonstrated a bypass of the standard privacy mech-
anism [20] responsible for the impossibility of similar leaks
via standard JavaScript APIs [14]. Identical mechanics can be
reused to exfiltrate other information.

2) Stealing cross-origin resources: Attacker website could
fetch objects, such as images, or contents of iframes, con-
taining sensitive information (i.e. bank balance, etc.) and
displaying them pixel-by-pixel on a website styled similarly
to the ways described in the previous section. In this way,
Ambient Light Sensor API allowed to read cross-origin re-
sources, bypassing the standard security model of the web,
the single-origin policy.

3) Analysis: Information exfiltration via the light sensor
channel extracts one bit of information at a time. This factor
determines the practical speed of detection in any similar
approaches. While in principle in 2017 web browser sensors
could operate at 60Hz rate, for practical reasons this did not
correspond to an actual ability of extracting 60 bits per second.
The rate at which a change in screen brightness happen and can
be detected by the sensor are the constraining factors. In our
experimentation and demonstrations, we measured the screen
brightness-to-readout latency in the range of 200−300ms. For
a practical exploit, we limited to one bit per 500ms. In the case
of web browsing history stealing, such constraints correspond
to two websites scanned per second (or 1000 URLs scanned in
8 minutes and 20 seconds). For the exfiltration of information
across origins, assuming 6 bits per character string rendered
in a known font, the performance would correspond to the
extraction of 8-character string in 24 seconds

There are also other environmental considerations affecting
the lighting conditions, like as the possibility of the user
moving the device such as a mobile phone around, factors such
as the screen brightness (i.e. bright screen helps the attack),
proximity and angle of a reflecting surface above the sensor

(i.e. a phone lying on a shelf reflecting light from a parallel
surface like a mirror or an object, produces good results), the
amount of ambient light (darker environments are less noisy
and make detection easier), etc.

But the attack was a practical enough a demonstration of
an unconsidered, unforeseen and unexpected risk, ultimately
demonstrating a bypass of fundamental web security and
privacy model. This template demonstration stimulated design
reviews to continue in a structured manner, focusing on the
mitigation of privacy risks in an objective, evidence-based
setting.

C. Response

Risks of information leaks have been considered seriously.
As of 2020, practical vendor mitigation approach vary from
dropping the feature (Mozilla), non-implementation (WebKit),
and sanitization of light sensor readout (Chrome).

Firefox 62 deprecated and removed the devicelight events
which allowed to read the light level without user interaction
of awareness [21], [22], previously addressing a potential
fingerprinting vector due to an overly precise readout [23]).

The strategy chosen by the Chrome browser was more
nuanced. The early considerations for sensors in Chrome
considered capping the performance to a resolution of 4bit at
a frequency of 10Hz [24]. Our practical intervention via the
demonstration of unexpected privacy risks led developers to
practically test the environmental impact of change in lighting
conditions, in the end proposing an option of rounding off the
readout precision of the sensor to the nearest multiplication of
50 (i.e. using a 50 lux threshold; for example, a true readout of
49 is rounded to 50) [25]. The threshold was chosen following
manual tests involving the use of professional light sensors and
using our proof of concepts as a benchmark test to determine
a choice of the threshold. Version 80 of Chrome browser ship
with Ambient Light Sensor with this minimization strategy. As
of this writing access to Ambient Light Sensor remains gated
behind flags; the sensor is not available in default settings [26].

1) Other considerations:
• One potential minimization approach is the use of fi-

nite enumeration-like states of light conditions, such as:
"dark", "dim", "light". Similar scheme is to be provided
by ’light-level’ feature of the Media Queries Level 5 [27].
But Ambient Light Sensors API specification drafters
determined that the information offered by the Media
Queries API is not similar enough to use it as a full
replacement mechanism for the ambient light sensor.

• A separate issue identified during the work on the stan-
dard was that no satisfactory agreement over the actual
use cases for the Ambient Light sensors [28] existed, a
matter that became problematic in light of the potential
privacy risks. Eventually, potential use cases were iden-
tified.

IV. HIGH LEVEL TAKEAWAYS

We believe distilling of the lessons learned as conclusions
with future in mind is important. Privacy engineering is a

research and engineering art in development; in this sense, we
enrich the elements of the previous works [1]–[3], [5]. Based
on the aforementioned case study, we highlighting points po-
tentially worth to consider in future data protection or privacy
impact assessments concerning new technologies or features,
particularly those related to web or mobile ecosystems.

A. Viewing risk in a broad sense
Interest in equipping the Web platform with functionality

often already available to mobile apps may become significant
in context of the Progressive Web Application paradigm. Due
to the web complexity and differences to the native mobile
apps model, novel web features may surface unexpected
security or privacy risks. Considering platform and ecosystem
specific constraints focus may be put on both typical as well
and the the less conventional risks.

Some concerns [10] may be insufficient to demonstrate a
convincing practical case. But more directed corner cases,
like the information leaks and (out-of-band) data exfiltration
described in this paper, might help in constructive ways.
Outside-the-box approach to risk scenarios is beneficial.

B. Role of demonstrations to show a clear case to discuss
While privacy engineering and security engineering are

not the same. But like in security domain, objective criteria
helps to identify risk points, as well as to track and measure
the improvement or regressions. We constructed a clear and
objective edge case that clearly showed problematic issues,
allowing the discussions over privacy concerns to be put in a
rational and objective plane.

Prudence is needed to keep in mind the special considera-
tions related to cases that may be challenging to quantify, such
as some aspects of some data protection, privacy or human
rights considerations. Accepting that it might not always be
possible to craft such a universal, clear and demonstrable
problem point, may be justified.

C. Interact between research, standardization, developers
Close cooperation and direct interactions between re-

searchers, security and privacy engineers, analysts, standard-
ization and feature developers help in effective identification of
undesirable aspects that could lead in privacy risks, allowing
for satisfactory resolution; in this sense, we reaffirm some
observations from [5]. The consensus-driven approach to web
standards development might have helped to drive the debate
towards seriously considering the risk scenarios, by involving
a diverse group of stakeholders.

Such an interactive process may be time-consuming. Raised
concerns may result in a sizable number of conversations. We
are aware of more than 10 different discussion threads taking
place over different channels (i.e. GitHub, per-vendor bug
repository systems, mailing lists, and other places) about the
Ambient Light Sensor API problems. While each such thread
may contain unique insights, some participants are unable to
take part in all of them. We perceive it as a feature of the web
platform development nature. Standardization fora may be the
contact hub.

D. Risk-benefit considerations for new features

Some APIs providing sensitive information deserve special
attention and protection. This is the case with numerous APIs
gated behind permissions (e.g. access to the camera where
explicit permission is needed), picker-like mechanics (e.g.
access to files via Filesystem API is based on individual
files; similar exists behavior in case of pairing with wireless
devices via the Bluetooth API). In a reality where no objective
requirements exist that indicate when a feature should be
subject to the protective mechanism, it is solely at the designer
discretion, and subject to reviews. During this study, we
witnessed that participants taking part in consensus-driven
standardization work may face difficulties to convince others
when 1) unconstrained access to a potentially sensitive API
is or is not justified, 2) that it is or is not a security or
privacy issue. But prior to an expansion of the risk surface,
importance of use cases and motivations should be clear and
evident. Identified early in the development, before deciding
about the exposure of the new API, in line with the risk-benefit
assessment.

V. CONCLUSION

Stealing web browsing history with a light sensor is not
expected. Perhaps even difficult to believe. Website’s ability
to steal the list of user visited websites or exfiltrating data
with a light sensor is highly counter-intuitive. We performed
a deep and out of the box privacy risk assessment of the
ambient light sensor API, and in an ultimate result, risks were
identified, and averted. Our initial motivations were grounded
in concerns arising from the potentially inconsiderate desire
of exposing a powerful feature. Our intervention led to a
healthy discussion within the consensus-based standardisation
and browser vendor communities, which ultimately led to a
safer part of the web ecosystem. No web browser did decide
to ship the API, at least not without special considerations.

That said, we point out that in general, the introduction of
the system of explicit user permissions do not fundamentally
change the nature of the sensitive data.

Even small changes or innocuous features have a potential
of back-firing in unexpected ways. Privacy engineering is
still a nascent field. Privacy remains a complex problem set
spanning technology, regulation, human rights, and more –
including local or cultural considerations. Due to this com-
plexity, not all problems can be objectified in a clear technical
way. This does not mean it is always impossible. We believe
the case in this paper offers insight in a broader light.

REFERENCES

[1] F. Dawson, “Specification Privacy Assessment (SPA) ,” https://yrlesru.
github.io/SPA/, 2013.

[2] N. Doty, “Reviewing for privacy in internet and web standard-setting,”
in Security and Privacy Workshops (SPW), 2015 IEEE. IEEE, 2015,
pp. 185–192.

[3] A. Cooper, H. Tschofenig, B. Aboba, J. Peterson, J. Morris, M. Hansen,
and R. Smith, “Rfc 6973 — privacy considerations for internet proto-
cols,” IETF, Tech. Rep., 2013.

[4] L. Olejnik and J. Novak, “Self-Review Questionnaire: Security and
Privacy,” https://w3ctag.github.io/security-questionnaire/, 2019.

[5] L. Olejnik, S. Englehardt, and A. Narayanan, “Battery status not
included: Assessing privacy in web standards.” in In 3rd International
Workshop on Privacy Engineering (IWPE’17). San Jose, United States,
2017.

[6] A. Das, G. Acar, N. Borisov, and A. Pradeep, “The web’s sixth sense:
A study of scripts accessing smartphone sensors,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 1515–1532.

[7] A. Kostiainen, “Ambient Light Sensor,” http://www.w3.org/TR/
ambient-light/, 2019.

[8] R. H. Venkatnarayan and M. Shahzad, “Gesture recognition using
ambient light,” Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, vol. 2, no. 1, pp. 1–28, 2018.

[9] L. Schwittmann, V. Matkovic, T. Weis et al., “Video recognition using
ambient light sensors,” in 2016 IEEE International Conference on
Pervasive Computing and Communications (PerCom). IEEE, 2016,
pp. 1–9.

[10] R. Spreitzer, “Pin skimming: Exploiting the ambient-light sensor in
mobile devices,” in Proceedings of the 4th ACM Workshop on Security
and Privacy in Smartphones & Mobile Devices, 2014, pp. 51–62.

[11] M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, and S. Mangard,
“Practical keystroke timing attacks in sandboxed javascript,” in European
Symposium on Research in Computer Security. Springer, 2017, pp.
191–209.

[12] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic timers
and where to find them: high-resolution microarchitectural attacks in
javascript,” in International Conference on Financial Cryptography and
Data Security. Springer, 2017, pp. 247–267.

[13] M. Smith, C. Disselkoen, S. Narayan, F. Brown, and D. Stefan, “Browser
history re: visited,” in 12th {USENIX} Workshop on Offensive Technolo-
gies ({WOOT} 18), 2018.

[14] A. Janc and L. Olejnik, “Web browser history detection as a real-
world privacy threat,” in European Symposium on Research in Computer
Security. Springer, 2010, pp. 215–231.

[15] Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and C. Jackson, “I still
know what you visited last summer: Leaking browsing history via user
interaction and side channel attacks,” in 2011 IEEE Symposium on
Security and Privacy. IEEE, 2011, pp. 147–161.

[16] D. Turner and A. Kostiainen, “Device and Sensors Working Group,”
https://www.w3.org/TR/2015/WD-ambient-light-20150903/, 2015.

[17] D. Akhawe and A. P. Felt, “Alice in warningland: A large-scale field
study of browser security warning effectiveness,” in Presented as part
of the 22nd {USENIX} Security Symposium ({USENIX} Security 13),
2013, pp. 257–272.

[18] pozdnyakov, “Relax requirements for asking permissions in sensors,”
https://github.com/w3c/sensors/issues/174, 2017.

[19] R. R. Anderson, J. A. Parrish et al., “The optics of human skin.” Journal
of investigative dermatology, vol. 77, no. 1, pp. 13–19, 1981.

[20] L. D. Baron, “Preventing attacks on a user’s history through css: visited
selectors,” Tillgänglig på Internet: http://dbaron. org/mozilla/visited-
privacy [Hämtad 15.03. 29], 2010.

[21] Firefox Site Compatibility, “Various device sensor APIs are
now deprecated,” https://www.fxsitecompat.dev/en-CA/docs/2018/
various-device-sensor-apis-are-now-deprecated/, 2018.

[22] J. Kingston, “Disable devicelight, deviceproximity and userproximity
events ,” https://bugzilla.mozilla.org/show_bug.cgi?id=1359076, xxx.

[23] “Bug 1299454: Round Off Ambient Light Sensor event.value,” https:
//bugzilla.mozilla.org/show_bug.cgi?id=1299454, 2016.

[24] “Sensor api permissions ux (public),” https://docs.google.com/document/
d/1XThujZ2VJm0z0Gon1zbFkYhYo6K8nMxJjxNJ3wk9KHo/edit,
2019.

[25] A. Shalamov, “Security and Privacy considerations for ALS,” https:
//github.com/w3c/ambient-light/issues/13#issuecomment-302393458,
2018.

[26] L. Olejnik, “Issue 642731: Round Off Ambient Light Sen-
sor event.value,” https://bugs.chromium.org/p/chromium/issues/detail?
id=642731, 2016.

[27] D. Jackson, F. Rivoal, and T. A. Jr., “Media Queries Level 5 ,” https:
//drafts.csswg.org/mediaqueries-5/, 2020.

[28] A. Konstiainen, “Provide "Use Cases and Requirements" section,” https:
//github.com/w3c/ambient-light/pull/26, 2017.

